1 Linear Systems of Differential Equations

1.1 Concepts

1. In order to solve a system of linear differential equations, we represent it in the form $\overrightarrow{y^{\prime}}=A \vec{y}$. Then we find the eigenvalues of A, say λ_{1}, λ_{2}. If $\lambda_{1} \neq \lambda_{2}$ are real, then we find the eigenvectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$ and the general solution is of the form $\vec{y}=c_{1} e^{\lambda_{1} t} \overrightarrow{v_{1}}+c_{2} e^{\lambda-2 t} \overrightarrow{v_{2}}$.

1.2 Example

2. Find the general solution to the systems of linear differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t)=3 y_{2}(t)
\end{array}\right.
$$

1.3 Problems

3. True False If 2 is an eigenvalue for A, then 4 is an eigenvalue for A^{2}.
4. True False If 2 is an eigenvalue of A and 3 is an eigenvalue of B, then $2 \cdot 3=6$ is an eigenvalue of $A B$.
5. True False If two matrices A, B have the same eigenvalues, then they have the same solutions to $\vec{y}^{\prime}=A \vec{y}$.
6. Find the solution to the systems of linear differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=5 y_{1}(t)-4 y_{2}(t) \\
y_{2}^{\prime}(t)=4 y_{1}(t)-5 y_{2}(t)
\end{array}\right.
$$

with $\vec{y}(0)=\binom{3}{3}$.
7. Find the general solution to the systems of linear differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=2 y_{1}(t)+y_{2}(t) \\
y_{2}^{\prime}(t)=y_{1}(t)+2 y_{2}(t)
\end{array}\right.
$$

8. Verify that $\vec{x}(t)=\left(\begin{array}{c}0 \\ -e^{t} \\ e^{t}\end{array}\right), \vec{y}(t)=\left(\begin{array}{c}e^{2 t} \\ -2 e^{2 t} \\ 0\end{array}\right), \vec{z}(t)=\left(\begin{array}{c}0 \\ e^{3 t} \\ e^{3 t}\end{array}\right)$ are solutions to $\vec{v}^{\prime}=A \vec{v}$ where $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 1 & 2\end{array}\right)$.
9. Under the same notation as the previous problem. Write out the system of linear equations that $\vec{v}^{\prime}=A \vec{v}$ represents and find the general solution.
10. Still with the same notation, what are the eigenvalues and eigenvectors of A ?

2 Miscellaneous

2.1 Problems

11. Let $V=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$. Let $A=V \cdot\left(\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right) \cdot V^{-1}$. Calculate A.
12. With the same A as above, calculate the eigenvalues and eigenvectors of A. What do you notice? How does this relate to V ?
13. (Challenge) Create a matrix with eigenvalues $\lambda=1,2$ and eigenvectors $\binom{1}{1}$ and $\binom{0}{1}$ respectively.
